基于多无线信道的LQG 控制系统分析与设计文献综述

 2022-09-27 02:09

{title}{title}

文献综述(或调研报告):

  1. 丢包情况下网络化系统控制问题

最开始,研究者们将无丢包情况下的网络化系统估计、控制问题推广到存在丢包情况下,因为信道存在不确定性,如图1所示的解码器并不能准确接收到量化器的输出,因此需要更多的数据率来弥补信道的不确定性所带来的信息损失,进而保证网络控制系统的稳定性。

首先给出如下定义:

定义1如果闭环系统满足

则称网络控制系统是均方可镇定的。

由此,文献[26]、[27]给出了当信道的丢包过程为独立同分布的二元过程的情况,并从信息论的角度证明了网络化系统达到均方稳定的充要条件为:

其中信道每次传输的信息量,为当前信道是否丢包,可以很直观的看出如果信道每次传输的信息量足够补偿系统状态的均方估计误差增长速率,则可以达到均方稳定。

文献[28]、[29]从基于网络理论的方法同样证明了当信道的丢包过程为独立同分布的情况,这里数据包将被建模为单个过程,TCP-like和UDP-like协议下系统的稳定问题,文献[30]从信道丢包存在马尔可夫性入手,证明了卡尔曼滤波器仍然是最小均方最小均方误差估计,但我毕设所讨论的重点在于控制而非估计,所以进一步的调研并没有深入。

相对来说,针对系统的控制问题并没有受到人们的太多关注,研究者们更多关注信道连接、丢包情况下卡尔曼滤波器的估计稳定问题,到但实际上,通信、估计与控制是紧密结合的,文献[31]、[32]研究了独立同分布下的最优控制问题,通常来说采用LQG或其他模糊控制方式,文献[33]通过LMI证明了网络线性系统稳定性的充分必要条件,文献[34]采用模型预测控制的方法证明了在i.i.d过程下如何对网络控制系统的丢包情况进行控制,并引入了全新的状态空间模型并提出了信道模型预测跟踪控制的概念,文献[35]研究了基于Takagi-Sugeno(T-S)模糊系统的丢包控制方案,考虑了事件触发并行控制问题并设计了对应的PDC控制器。

  1. 多信道分配与切换问题

随着通信技术的发展,通信过程逐渐将采用多条信道进行通信,但是信道间的通信质量、通信速度都存在着差别,进而甚至有损坏信道的可能,进而,也存在着私人信道相互占用等等各种问题,进而引出了针对信道分配与切换的种种研究。文献[36]针对两个观测信道的系统估计问题进行考虑,并证明了分离定理适用于多信道的一般情况,文献[37]研究了在传感器、控制器,控制器、执行器之间插入多个独立信道的最优LQG控制问题,并讨论了发送ACK的情况,文献[38]考虑了在MIMO系统中有限域LQG控制问题并进一步详细模拟。

相比而言,针对多信道的切换问题,近年来被频繁提起,目前,不同的带宽频谱被分配给不同的用户,以确保不同的无线用户在传输数据时进行共存[39],因此如何在不影响系统新能的情况下通过合理的切换信道来节约通信带宽成为了一个关键问题,因此便提出了认知无线电体系[40]来感知可用频谱并在对主要用户造成的干扰最小的情况下进行通信,非主要用户通过感知可用的用户频带并检测未使用的用户段进行通信,文献[41]研究了出现丢包情况下的认知无线电双链路切换问题,设置了一个开关模型来考虑传感器和估计器之间的最佳控制方案,类似的,文献[42]将基于认知无线电的单信道估计器稳定性问题拓展到多信道,在感知到当前信道信息的基础上进行通信,确保了通信的稳定,防止了信道带宽之间的冲突。

  1. 网络信息物理系统的多传感器融合问题

进一步,针对网络信息物理系统中多传感器的相互融合,文献[43]描述了分布式网络信息物理系统在交叉点融合的估计问题(DFE),提出了一种新的带补偿策略的通信约束模型来描述有限带宽,并推导出与概率相关的条件,使得所设计的DFE的均方误差有界,基于此,文献[44],描述了信道受限情况下的系统建模设计方法、并给出了Dos攻击下的网络化融合估计[45]

文献[46]计算了当远程估计器的性能遭受干扰、传感器数据丢失的影响状况,在不采用认知无线电算法的情况下[2],设计了一个信道优化算法对每个信道进行扫描。平衡传感能量和传输能量消耗,这进一步就提出了一个基础问题,在信道有权重的情况下如何平衡信道选择和通信成本[47]

而传感器融合的具体应用,文献[48]提出了对无线传感器网络的监控问题,考虑SN感知接点和RN中继节点的估计通信问题,并提出了一种基于树的感知通信,在实际工业应用中取得大量应用,进一步可用于核机器的数据传感[49],水中目标定位[50]等等。文献[51]深入研究了多传感器的融合估计方法,针对簇状传感器网络开发了顺序测量融合估计(SMF)和状态融合估计(SSF)方法,用于更快的处理异步和延迟数据,并降低了计算复杂度。

四、方案(设计方案、或研究方案、研制方案)论证:

1. 系统模型

我们所关心的是由网络信道的不确定性所引起的数据丢包如何影响系统的控制稳定,通常情况下,信道的不确定性被建模为一个马尔可夫随机丢包过程,即,其中为马尔可夫转移概率矩阵,这是一个基本的Gilbert-Elliott模型。

考虑如下的随机离散线性系统:

控制信号经不可靠信道传输到控制器,如图1所示,由于信道衰减或拥塞,数据包在信道的传播过程中可能存在丢失现象。类似地,表示执行器是否收到信号,不考虑延时等其他不确定因素, 则在第时刻, 执行器能获得以下信息:

图 1 单信道丢包模型

采用TCP-like的网络协议,即存在反馈信道使得解码器能够发送ACK至编码器,使发送端可以了解到控制器是否成功接收到前一时刻发送的数据包。

2. 控制方法论证

拟采用线性LQG控制的方案来研究针对TCP-like网络的马尔可夫丢包控制问题,在有限时域下,线性系统满足分离定理,可以将估计器和控制器分开设计,因此便出现了上述模型,通过计算最优值函数来解出最优控制,进一步,在无限时域上进行稳定性分析,在计算出单通道的控制方法之后考虑多通道的通信控制状况。

五、进度安排:

2018.12.20-2019.2.20 查阅相关资料

2019.2.21-2019.3.15 设计多无线信道的切换方法和控制器

2019.3.16-2019.4.10 开展系统稳定性分析研究

2019.4.11-2019.5.14 开展仿真实验进行数值仿真分析

2019.5.15-2019.6.5 撰写毕业设计论文、毕设验收及答辩

六、参考文献

[1] You K, Fu M, Xie L. Mean square stability for Kalman filtering with Markovian packet losses[J]. Automatica, 2011, 47(12): 2647-2657.

[2] Cao X, Cheng P, Chen J, et al. Cognitive radio based state estimation in cyber-physical systems[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(3): 489-502.

[3] Ma X, Djouadi S M, Li H, et al. Estimation and Control over Cognitive Radio Channels with Distributed and Dynamic Spectral Activity[J]. arXiv preprint arXiv:1710.11120, 2017.

[4] Lunze J, Lehmann D. A state-feedback approach to event-based control[J]. Automatica, 2010, 46(1): 211-215.

[5] Wang Y L, Han Q L. Modelling and controller design for discrete-time networked control systems with limited channels and data drift[J]. Information Sciences, 2014, 269: 332-348.

[6] Hespanha J P, Naghshtabrizi P, Xu Y. A survey of recent results in networked control systems[J]. Proceedings of the IEEE, 2007, 95(1): 138-162.

[7] Du Z, Yue D, Hu S. H-infinity stabilization for singular networked cascade control systems with state delay and disturbance[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2): 882-894.

[8] Yue D, Han Q L, Lam J. Network-based robust Hinfin; control of systems with uncertainty[J]. Automatica, 2005, 41(6): 999-1007.

[9] Shi Y, Yu B. Robust mixed H2/Hinfin; control of networked control systems with random time delays in both forward and backward communication links[J]. Automatica, 2011, 47(4): 754-760.

[10] Zhang D, Han Q L, Jia X. Network-based output tracking control for a class of TS fuzzy systems that can not be stabilized by nondelayed output feedback controllers[J]. IEEE Transactions on Cybernetics, 2015, 45(8): 1511-1524.

[11] Xiong J, Lam J. Stabilization of linear systems over networks with bounded packet loss[J]. Automatica, 2007, 43(1): 80-87.

[12] Wang Z, Yang F, Ho D W C, et al. Robust $ H_ {infty} $ Control for Networked Systems With Random Packet Losses[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37(4): 916-924.

[13] Xiong J, Lam J. Stabilization of networked control systems with a logic ZOH[J]. IEEE Transactions on Automatic Control, 2009, 54(2): 358-363.

[14] Cloosterman M B G, Hetel L, Van de Wouw N, et al. Controller synthesis for networked control systems[J]. Automatica, 2010, 46(10): 1584-1594.

[15] Tsumura K, Ishii H, Hoshina H. Tradeoffs between quantization and packet loss in networked control of linear systems[J]. Automatica, 2009, 45(12): 2963-2970.

[16] Ishido Y, Takaba K, Quevedo D E. Stability analysis of networked control systems subject to packet-dropouts and finite-level quantization[J]. Systems amp; Control Letters, 2011, 60(5): 325-332.

[17] Naghshtabrizi P, Hespanha J P, Teel A R. Exponential stability of impulsive systems with application to uncertain sampled-data systems[J]. Systems amp; Control Letters, 2008, 57(5): 378-385.

[18] Seuret A, Gouaisbaut F. Wirtinger-based integral inequality: Application to time-delay systems[J]. Automatica, 2013, 49(9): 2860-2866.

[19] Seuret A. A novel stability analysis of linear systems under asynchronous samplings[J]. Automatica, 2012, 48(1): 177-182.

[20] Nilsson J, Bernhardsson B, Wittenmark B. Stochastic analysis and control of real-time systems with random time delays[J]. Automatica, 1998, 34(1): 57-64.

[21] Seiler P, Sengupta R. An h/sub/spl infin//approach to networked control[J]. IEEE Transactions on Automatic Control, 2005, 50(3): 356-364.

[22] Xiong J, Lam J. Stabilization of linear systems over networks with bounded packet loss[J]. Automatica, 2007, 43(1): 80-87.

[23] Lin H, Antsaklis P J. Stability and persistent disturbance attenuation properties for a class of networked control systems: switched system approach[J]. International Journal of Control, 2005, 78(18): 1447-1458.

[24] Smith S C, Seiler P. Estimation with lossy measurements: jump estimators for jump systems[J]. IEEE Transactions on Automatic Control, 2003, 48(12): 2163-2171.

[25] Huang M, Dey S. Stability of Kalman filtering with Markovian packet losses[J]. Automatica, 2007, 43(4): 598-607.

[26] Minero P, Franceschetti M, Dey S, et al. Data rate theorem for stabilization over time-varying feedback channels[J]. IEEE Transactions on Automatic Control, 2009, 54(2): 243-255.

[27] You K, Xie L. Minimum data rate for mean square stabilization of discrete LTI systems over lossy channels[J]. IEEE Transactions on Automatic Control, 2010, 55(10): 2373-2378.

[28] Schenato L, Sinopoli B, Franceschetti M, et al. Foundations of control and estimation over lossy networks[J]. Proceedings of the IEEE, 2007, 95(1): 163-187.

[29] Sinopoli B, Schenato L, Franceschetti M, et al. Kalman filtering with intermittent observations[J]. IEEE transactions on Automatic Control, 2004, 49(9): 1453-1464.

[30] You K, Fu M, Xie L. Mean square stability for Kalman filtering with Markovian packet losses[J]. Automatica, 2011, 47(12): 2647-2657.

[31] Smith S C, Seiler P. Estimation with lossy measurements: jump estimators for jump systems[J]. IEEE Transactions on Automatic Control, 2003, 48(12): 2163-2171.

[32] Huang M, Dey S. Stability of Kalman filtering with Markovian packet losses[J]. Automatica, 2007, 43(4): 598-607.

[33] Wu J, Chen T. Design of networked control systems with packet dropouts[J]. IEEE Transactions on Automatic control, 2007, 52(7): 1314-1319.

[34] Lu R, Xu Y, Zhang R. A new design of model predictive tracking control for networked control system under random packet loss and uncertainties[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 6999-7007.

[35] Chen H, Xu D, Li Z, et al. Control for Discrete-Time Networked TS Fuzzy Systems with Packet Loss Based on Event-Triggered Mechanism[J]. Mathematical Problems in Engineering, 2019, 2019.

[36] Liu X, Goldsmith A. Kalman filtering with partial observation losses[C]//2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601). IEEE, 2004, 4: 4180-4186.

[37] Garone E, Sinopoli B, Casavola A. LQG control over lossy TCP-like networks with probabilistic packet acknowledgements[C]//2008 47th IEEE Conference on Decision and Control. IEEE, 2008: 2686-2691.

[38] Garone E, Sinopoli B, Goldsmith A, et al. LQG control for MIMO systems over multiple erasure channels with perfect acknowledgment[J]. IEEE Transactions on Automatic Control, 2012, 57(2): 450-456.

[39] De Koning W L. Optimal estimation of linear discrete-time systems with stochastic parameters[J]. Automatica, 1984, 20(1): 113-115.

[40] Simon D. Optimal state estimation: Kalman, H infinity, and nonlinear approaches[M]. John Wiley amp; Sons, 2006.

[41] Ma X, Djouadi S M, Li H, et al. Estimation and Control over Cognitive Radio Channels with Distributed and Dynamic Spectral Activity[J]. arXiv preprint arXiv:1710.11120, 2017.

[42] Cao X, Cheng P, Chen J, et al. Cognitive radio based state estimation in cyber-physical systems[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(3): 489-502.

[43] Chen, B., Hu, G., Ho, D.W. and Yu, L., 2016. Distributed covariance intersection fusion estimation for cyber-physical systems with communication constraints. IEEE Transactions on Automatic Control, 61(12), pp.4020-4026.

[44] Chen B, Ho D W C, Zhang W A, et al. Distributed dimensionality reduction fusion estimation for cyber-physical systems under DoS attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017 (99): 1-14.

[45] Chen B, Yu L, Ho D W C, et al. Networked Fusion Estimation under Denial-of-Service Attacks[J]. IFAC-PapersOnLine, 2017, 50(1): 3835-3840.

[46] Cao, X., Zhou, X., Liu, L. and Cheng, Y., 2015. Energy-efficient spectrum sensing for cognitive radio enabled remote state estimation over wireless channels. IEEE Transactions on Wireless Communications, 14(4), pp.2058-2071.

[47] Han, D., Mo, Y., Wu, J. and Shi, L., 2016. An opportunistic sensor scheduling solution to remote state estimation over multiple channels. IEEE Transactions on Signal Processing, 64(18), pp.4905-4917.

[48] Chen, C., Yan, J., Lu, N., Wang, Y., Yang, X. and Guan, X., 2015. Ubiquitous monitoring for industrial cyber-physical systems over relay-assisted wireless sensor networks. IEEE Transactions on Emerging Topics in Computing, 3(3), pp.352-362.

[49] Luo X, Zhang D, Yang L T, et al. A kernel machine-based secure data sensing and fusion scheme in wireless sensor networks for the cyber-physical systems[J]. Future Generation Computer Systems, 2016, 61: 85-96.

[50] Yan J, Xu Z, Wan Y, et al. Consensus estimation‐based target localization in underwater acoustic sensor networks[J]. International Journal of Robust and Nonlinear Control, 2017, 27(9): 1607-1627.

[51] Zhang, W.A. and Shi, L., 2018. Sequential fusion estimation for clustered sensor networks. Automatica, 89, pp.358-363.

资料编号:[194088]

免费ai写开题、写任务书: 免费Ai开题 | 免费Ai任务书 | 降AI率 | 降重复率 | 论文一键排版